73 research outputs found

    Comparison of Four ChIP-Seq Analytical Algorithms Using Rice Endosperm H3K27 Trimethylation Profiling Data

    Get PDF
    Chromatin immunoprecipitation coupled with high throughput DNA Sequencing (ChIP-Seq) has emerged as a powerful tool for genome wide profiling of the binding sites of proteins associated with DNA such as histones and transcription factors. However, no peak calling program has gained consensus acceptance by the scientific community as the preferred tool for ChIP-Seq data analysis. Analyzing the large data sets generated by ChIP-Seq studies remains highly challenging for most molecular biology laboratories

    ChIP-PaM: an algorithm to identify protein-DNA interaction using ChIP-Seq data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>ChIP-Seq is a powerful tool for identifying the interaction between genomic regulators and their bound DNAs, especially for locating transcription factor binding sites. However, high cost and high rate of false discovery of transcription factor binding sites identified from ChIP-Seq data significantly limit its application.</p> <p>Results</p> <p>Here we report a new algorithm, ChIP-PaM, for identifying transcription factor target regions in ChIP-Seq datasets. This algorithm makes full use of a protein-DNA binding pattern by capitalizing on three lines of evidence: 1) the tag count modelling at the peak position, 2) pattern matching of a specific tag count distribution, and 3) motif searching along the genome. A novel data-based two-step eFDR procedure is proposed to integrate the three lines of evidence to determine significantly enriched regions. Our algorithm requires no technical controls and efficiently discriminates falsely enriched regions from regions enriched by true transcription factor (TF) binding on the basis of ChIP-Seq data only. An analysis of real genomic data is presented to demonstrate our method.</p> <p>Conclusions</p> <p>In a comparison with other existing methods, we found that our algorithm provides more accurate binding site discovery while maintaining comparable statistical power.</p

    A regression analysis of gene expression in ES cells reveals two gene classes that are significantly different in epigenetic patterns

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To understand the gene regulatory system that governs the self-renewal and pluripotency of embryonic stem cells (ESCs) is an important step for promoting regenerative medicine. In it, the role of several core transcription factors (TFs), such as Oct4, Sox2 and Nanog, has been intensively investigated, details of their involvement in the genome-wide gene regulation are still not well clarified.</p> <p>Methods</p> <p>We constructed a predictive model of genome-wide gene expression in mouse ESCs from publicly available ChIP-seq data of 12 core TFs. The tag sequences were remapped on the genome by various alignment tools. Then, the binding density of each TF is calculated from the genome-wide bona fide TF binding sites. The TF-binding data was combined with the data of several epigenetic states (DNA methylation, several histone modifications, and CpG island) of promoter regions. These data as well as the ordinary peak intensity data were used as predictors of a simple linear regression model that predicts absolute gene expression. We also developed a pipeline for analyzing the effects of predictors and their interactions.</p> <p>Results</p> <p>Through our analysis, we identified two classes of genes that are either well explained or inefficiently explained by our model. The latter class seems to be genes that are not directly regulated by the core TFs. The regulatory regions of these gene classes show apparently distinct patterns of DNA methylation, histone modifications, existence of CpG islands, and gene ontology terms, suggesting the relative importance of epigenetic effects. Furthermore, we identified statistically significant TF interactions correlated with the epigenetic modification patterns.</p> <p>Conclusions</p> <p>Here, we proposed an improved prediction method in explaining the ESC-specific gene expression. Our study implies that the majority of genes are more or less directly regulated by the core TFs. In addition, our result is consistent with the general idea of relative importance of epigenetic effects in ESCs.</p

    High Resolution Detection and Analysis of CpG Dinucleotides Methylation Using MBD-Seq Technology

    Get PDF
    Methyl-CpG binding domain protein sequencing (MBD-seq) is widely used to survey DNA methylation patterns. However, the optimal experimental parameters for MBD-seq remain unclear and the data analysis remains challenging. In this study, we generated high depth MBD-seq data in MCF-7 cell and developed a bi-asymmetric-Laplace model (BALM) to perform data analysis. We found that optimal efficiency of MBD-seq experiments was achieved by sequencing ∼100 million unique mapped tags from a combination of 500 mM and 1000 mM salt concentration elution in MCF-7 cells. Clonal bisulfite sequencing results showed that the methylation status of each CpG dinucleotides in the tested regions was accurately detected with high resolution using the proposed model. These results demonstrated the combination of MBD-seq and BALM could serve as a useful tool to investigate DNA methylome due to its low cost, high specificity, efficiency and resolution

    ChIPpeakAnno: a Bioconductor package to annotate ChIP-seq and ChIP-chip data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Chromatin immunoprecipitation (ChIP) followed by high-throughput sequencing (ChIP-seq) or ChIP followed by genome tiling array analysis (ChIP-chip) have become standard technologies for genome-wide identification of DNA-binding protein target sites. A number of algorithms have been developed in parallel that allow identification of binding sites from ChIP-seq or ChIP-chip datasets and subsequent visualization in the University of California Santa Cruz (UCSC) Genome Browser as custom annotation tracks. However, summarizing these tracks can be a daunting task, particularly if there are a large number of binding sites or the binding sites are distributed widely across the genome.</p> <p>Results</p> <p>We have developed <it>ChIPpeakAnno </it>as a Bioconductor package within the statistical programming environment R to facilitate batch annotation of enriched peaks identified from ChIP-seq, ChIP-chip, cap analysis of gene expression (CAGE) or any experiments resulting in a large number of enriched genomic regions. The binding sites annotated with <it>ChIPpeakAnno </it>can be viewed easily as a table, a pie chart or plotted in histogram form, i.e., the distribution of distances to the nearest genes for each set of peaks. In addition, we have implemented functionalities for determining the significance of overlap between replicates or binding sites among transcription factors within a complex, and for drawing Venn diagrams to visualize the extent of the overlap between replicates. Furthermore, the package includes functionalities to retrieve sequences flanking putative binding sites for PCR amplification, cloning, or motif discovery, and to identify Gene Ontology (GO) terms associated with adjacent genes.</p> <p>Conclusions</p> <p><it>ChIPpeakAnno </it>enables batch annotation of the binding sites identified from ChIP-seq, ChIP-chip, CAGE or any technology that results in a large number of enriched genomic regions within the statistical programming environment R. Allowing users to pass their own annotation data such as a different Chromatin immunoprecipitation (ChIP) preparation and a dataset from literature, or existing annotation packages, such as <it>GenomicFeatures </it>and <it>BSgenom</it>e, provides flexibility. Tight integration to the <it>biomaRt </it>package enables up-to-date annotation retrieval from the BioMart database.</p

    Improved ChIP-chip analysis by a mixture model approach

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Microarray analysis of immunoprecipitated chromatin (ChIP-chip) has evolved from a novel technique to a standard approach for the systematic study of protein-DNA interactions. In ChIP-chip, sites of protein-DNA interactions are identified by signals from the hybridization of selected DNA to tiled oligomers and are graphically represented as peaks. Most existing methods were designed for the identification of relatively sparse peaks, in the presence of replicates.</p> <p>Results</p> <p>We propose a data normalization method and a statistical method for peak identification from ChIP-chip data based on a mixture model approach. In contrast to many existing methods, including methods that also employ mixture model approaches, our method is more flexible by imposing less restrictive assumptions and allowing a relatively large proportion of peak regions. In addition, our method does not require experimental replicates and is computationally efficient. We compared the performance of our method with several representative existing methods on three datasets, including a spike-in dataset. These comparisons demonstrate that our approach is more robust and has comparable or higher power than the other methods, especially in the context of abundant peak regions.</p> <p>Conclusion</p> <p>Our data normalization and peak detection methods have improved performance to detect peak regions in ChIP-chip data.</p

    GRISOTTO: A greedy approach to improve combinatorial algorithms for motif discovery with prior knowledge

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Position-specific priors (PSP) have been used with success to boost EM and Gibbs sampler-based motif discovery algorithms. PSP information has been computed from different sources, including orthologous conservation, DNA duplex stability, and nucleosome positioning. The use of prior information has not yet been used in the context of combinatorial algorithms. Moreover, priors have been used only independently, and the gain of combining priors from different sources has not yet been studied.</p> <p>Results</p> <p>We extend RISOTTO, a combinatorial algorithm for motif discovery, by post-processing its output with a greedy procedure that uses prior information. PSP's from different sources are combined into a scoring criterion that guides the greedy search procedure. The resulting method, called GRISOTTO, was evaluated over 156 yeast TF ChIP-chip sequence-sets commonly used to benchmark prior-based motif discovery algorithms. Results show that GRISOTTO is at least as accurate as other twelve state-of-the-art approaches for the same task, even without combining priors. Furthermore, by considering combined priors, GRISOTTO is considerably more accurate than the state-of-the-art approaches for the same task. We also show that PSP's improve GRISOTTO ability to retrieve motifs from mouse ChiP-seq data, indicating that the proposed algorithm can be applied to data from a different technology and for a higher eukaryote.</p> <p>Conclusions</p> <p>The conclusions of this work are twofold. First, post-processing the output of combinatorial algorithms by incorporating prior information leads to a very efficient and effective motif discovery method. Second, combining priors from different sources is even more beneficial than considering them separately.</p

    Detection and Removal of Biases in the Analysis of Next-Generation Sequencing Reads

    Get PDF
    Since the emergence of next-generation sequencing (NGS) technologies, great effort has been put into the development of tools for analysis of the short reads. In parallel, knowledge is increasing regarding biases inherent in these technologies. Here we discuss four different biases we encountered while analyzing various Illumina datasets. These biases are due to both biological and statistical effects that in particular affect comparisons between different genomic regions. Specifically, we encountered biases pertaining to the distributions of nucleotides across sequencing cycles, to mappability, to contamination of pre-mRNA with mRNA, and to non-uniform hydrolysis of RNA. Most of these biases are not specific to one analyzed dataset, but are present across a variety of datasets and within a variety of genomic contexts. Importantly, some of these biases correlated in a highly significant manner with biological features, including transcript length, gene expression levels, conservation levels, and exon-intron architecture, misleadingly increasing the credibility of results due to them. We also demonstrate the relevance of these biases in the context of analyzing an NGS dataset mapping transcriptionally engaged RNA polymerase II (RNAPII) in the context of exon-intron architecture, and show that elimination of these biases is crucial for avoiding erroneous interpretation of the data. Collectively, our results highlight several important pitfalls, challenges and approaches in the analysis of NGS reads
    corecore